光電效應是物理學中一個重要而神奇的現象。在高于某特定頻率的電磁波(該頻率稱為極限頻率thresholdfrequency)照射下,某些物質內部的電子吸收能量后彈出而形成電流,即光生電。光電現象由德國物理學家赫茲于1887年發現,而正確的解釋為愛因斯坦所提出。科學家們在研究光電效應的過程中,物理學者對光子的量子性質有了更加深入的了解,這對波粒二象性概念的提出有重大影響。光照射到金屬上,引起物質的電性質發生變化。這類光變致電的現象被人們統稱為光電效應(Photoelectriceffect)。微型化是建立在微電子機械系統(MEMS)技術基礎上的,已成功應用在硅器件上做成硅壓力傳感器。光電傳感器設計
非接觸測量以光電、電磁等為基礎的測量方法。非接觸測量是以光電、電磁等技術為基礎,在不接觸被測物體表面的情況下,得到物體表面參數信息的測量方法。典型的非接觸測量方法如激光三角法、電渦流法、超聲測量法、機器視覺測量等等。電磁學(英語:electromagnetism)是研究電磁力(電荷粒子之間的一種物理性相互作用)的物理學的一個分支。電磁力通常表現為電磁場,如電場、磁場和光。電磁力是自然界中四種基本相互作用之一。其它三種基本相互作用是強相互作用、弱相互作用、引力。電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關系的一門學科。光電傳感器設計從而成為21世紀新的經濟增長點。
位移傳感器又稱為線性傳感器,把位移轉換為電量的傳感器。位移傳感器是一種屬于金屬感應的線性器件,傳感器的作用是把各種被測物理量轉換為電量它分為電感式位移傳感器,電容式位移傳感器,光電式位移傳感器,超聲波式位移傳感器,霍爾式位移傳感器。在這種轉換過程中有許多物理量(例如壓力、流量、加速度等)常常需要先變換為位移,然后再將位移變換成電量。因此位移傳感器是一類重要的基本傳感器。在生產過程中,位移的測量一般分為測量實物尺寸和機械位移兩種。機械位移包括線位移和角位移。按被測變量變換的形式不同,位移傳感器可分為模擬式和數字式兩種。模擬式又可分為物性型(如自發電式)和結構型兩種。常用位移傳感器以模擬式結構型居多,包括電位器式位移傳感器、電感式位移傳感器、自整角機、電容式位移傳感器、電渦流式位移傳感器、霍爾式位移傳感器等。數字式位移傳感器的一個重要優點是便于將信號直接送入計算機系統。這種傳感器發展迅速,應用日益廣闊。
網絡技術的出現,正在并將極大地改變人們生活的各個方面。具體到計量測試、測控技術及儀器儀表領域,微機化儀器的聯網,典型測量儀器設備以及測量信息的地區性、全國性乃至全球性資源共享,各等級計量標準跨地域實施直接的數字化溯源比對,遠程數據采集與測控,遠程設備故障診斷,電、水、燃氣、熱能等的自動抄表,等等,都是網絡技術進步并各方位介入其中發揮關鍵作用的必然結果。以自然基準溯源和傳遞,同時在不同量程實現國際比對。如果自己沒有能力比對就要依靠其它國家。新技術的到來,世界開始進入信息時代。
處理在信號的處理階段,主要是對數字信號進行處理以便顯示,或者發出控制信號。我們通過顯示出來的信號來判斷自動化系統上對象的運轉是否正常,如果信號顯示不正常,就需要對信號進行計算與處理,得到控制信號發送給對象,使對象調整運轉的狀態以復歸正常。顯示控制在顯示與控制環節,顯示主要是指將數字信號通過便于我們觀察的形式顯示出來以便我們進行判斷,控制主要是指將控制信號傳送給并作用于對象的過程。上面的四個環節就構成了整個測控的過程,如果包括控制的過程,則剛好形成了一個閉環,即信號從對象開始,經過采集、整理、處理,結尾又將控制信號作用于對象的閉環。傳感器的特點包括:微型化、數字化、智能化、多功能化、系統化、網絡化。光電傳感器設計
現代科學技術的發展,進入了許多新領域。光電傳感器設計
CCD圖像傳感器:用于攝像機等領域的元件。CCD圖像傳感器(ChargedCoupledDevice)于1969年在貝爾試驗室研制成功,之后由日商等公司開始量產,其發展歷程已經將近30多年,從初期的10多萬像素已經發展至目前主流應用的兩千多萬像素。CCD又可分為線陣(Linear)與面陣(Area)兩種,其中線陣應用于影像掃瞄器及傳真機上,而面陣主要應用于工業相機、數碼相機(DSC)、攝錄影機、監視攝影機等多項影像輸入產品上。1969年,博伊爾和史密斯極富創意地發明了一種半導體裝置,可以把光學影像轉化為數字信號,這一裝置,就是CCD圖像傳感器。光電傳感器設計