2.增壓器的hexin結構與工作方式廢氣渦輪增壓器主要由渦輪和壓氣機組成。柴油機排出的高溫、高壓廢氣通過排氣歧管進入渦輪殼,并經過噴嘴環進入渦輪。由于噴嘴環的收縮作用,廢氣流的速度增加,并以高速沖擊渦輪葉片,使其快速旋轉。渦輪葉輪與壓氣機葉輪安裝在同一根軸上,因此兩者同步旋轉。壓氣機葉輪高速旋轉時,將空氣吸入,并加速壓縮,使空氣壓力增高。隨后,壓縮空氣進入擴壓器,并通過柴油機的進氣管進入氣缸,與柴油混合燃燒,提高燃燒效率和發動機功率。渦輪增壓器的效率與發動機排放廢氣的溫度、壓力以及渦輪的轉速密切相關。通常,廢氣渦輪增壓器的轉速可達數萬轉/分鐘,因此需要采用特殊的潤滑系統和密封結構,以確保增壓器的正常運行。LTP渦輪增壓器 5700246A,久保田渦輪增壓器總成1K862-17010技術的發展使得渦輪增壓器在小型發動機上的應用也越來越普遍。遼寧購買渦輪增壓器10326868S
二、渦輪增壓器的關鍵組成部分進氣系統:增壓器進口濾網、消聲器、增壓器葉輪、擴壓器、空氣冷卻器、進氣總管、進氣閥。排氣系統:排氣閥、排氣支管、排氣總管、廢氣渦輪、排氣管、廢氣鍋爐。監測設備:渦輪轉子轉速傳感器、排煙溫度計、增壓端壓力表、空氣冷卻器前后壓差計。這些部件相互聯動,確保增壓器在理想狀態下穩定高效運行。一旦出現異常,監測數據的波動往往揭示潛在故障。三、渦輪增壓器常見異常現象及原因分析廢氣渦輪進口端溫度過高可能原因:噴油器霧化不良、高壓油泵供油時序滯后、排氣閥密封不嚴、燃油質量差、掃氣壓力低。影響:增壓器轉速異常升高,長時間高溫會導致轉子部件損壞。廢氣渦輪端溫度過低可能原因:供油時序過早、噴油器堵塞、低負載運轉。影響:增壓器轉速下降,進氣量不足,導致功率下降。增壓端掃氣壓力異常掃氣壓力過高:進氣閥泄漏、空氣冷卻器密封不良、增壓器轉速過快。掃氣壓力過低:空氣冷卻器臟堵、渦輪轉速降低、轉子軸承磨損。增壓器喘振可能原因:進氣通道堵塞、壓氣端葉輪轉速不足、排煙脈動。影響:增壓器振動劇烈,伴隨異響,長期喘振可能導致葉輪損壞。湖南LIEBHERR渦輪增壓器D936L渦輪增壓器能讓車輛在高速行駛時,依然保持充沛的動力儲備。
在前期故障排查中,已對A列排氣背壓傳感器和排氣情況均進行了檢查,并沒有發現異常,因此這次再排查過程中,先從B列增壓器燃氣閥轉換慢的問題進行排查。打開機旁STC蝶閥檢測、機旁手動、電磁閥箱的面板,手動打開和關閉B列增壓器燃氣閥。發現打開該閥時,其打開的動作較慢,但在關閉該燃氣閥時其動作較快,說明燃氣閥在打開的過程中,0.7 MPa的控制空氣進氣量少。檢查燃氣閥邊上的進氣管和排氣管,均無問題,然后順著電磁閥后的控制空氣管路進行排查,發現在2個增壓器之間的一個比較隱蔽的地方,燃氣閥的進氣管與A列排氣背壓的采集管緊緊靠在一起。B列增壓器燃氣閥的進氣銅管和A列排氣背壓的采集銅管見圖2,如圖2(a)所示,位于上部的是A列排氣背壓的采集管;用手強制把這2個銅管分開,發現燃氣閥的進氣銅管和A列排氣背壓的采集管由于摩擦均產生了破口,如圖2(b)所示;隨即對這2個銅管破口處進行切割,增加接頭修復,如圖2(c)所示。把修補后的管路安裝好,在安裝過程中避免兩管路靠得太緊,防止振動產生磨損。打開0.7 MPa的控制空氣,再次用手動方式在STC蝶閥檢測、機旁手動、電磁閥箱面板上操作打開和關閉B列燃氣閥,發現燃氣閥打開速度恢復正常。
渦輪增壓器作為提高內燃機功率和效率的重要技術,在百余年的發展歷程中不斷演進。從z初的概念提出到成熟的工業化應用,每一次技術突破都推動著內燃機性能的飛躍。如今,渦輪增壓器不僅廣泛應用于汽車、船舶和工業設備,更在節能減排和清潔能源轉型中扮演著不可替代的角色。
二十世紀七十年代末期,MTU公司首先開發出相繼增壓系統,隨后成功應用在該公司之后生產的各系列高性能指標柴油機。1983年法國SEMTpielstick公司開始在16PA4-200VG-D6、PA6-280、PC4-570系列柴油機上進行相繼增壓技術研究。1992年德國KKK公司渦輪增壓器廠在漢諾威貨車上提出了一種用于車用和工業用柴油機的相繼渦輪增壓系統。1992年Mercedes-Benz為MTU12V396TE14型柴油機選配2臺增壓器的相繼增壓系統,并shouci安裝到DF200型內燃機車上。1998年,美國海軍運用相繼增壓技術對裝備在LPD-17船塢運輸艦上的帶增壓放氣的16VPC2-5中速柴油機進行了改造。 廢氣推動渦輪葉片轉動,渦輪又帶動壓縮機葉輪旋轉,使進氣壓力得以提升,讓燃油燃燒更充分。
廢氣渦輪增壓器工作原理廢氣渦輪增壓器由一臺離心式壓氣機和一個廢氣渦輪組成,這兩部分安裝在同一主軸上,形成高速旋轉的整體。工作時,柴油機氣缸排出的廢氣通過非水冷燃氣進氣殼進入噴嘴總成,廢氣膨脹后將熱能轉化為機械能,推動渦輪旋轉,同時帶動同軸壓氣機葉輪一起工作。壓氣機通過進氣系統吸入新鮮空氣,經葉輪壓縮后,通過擴壓器和中冷器冷卻,**終送入柴油機進氣總管,實現增壓和提高燃燒效率的目的。
增壓器故障案例及原因分析在長期高負荷運行條件下,如某大型船舶的PA6系列柴油機在約11000小時工作后,廢氣渦輪增壓器曾出現多種故障,主要包括:異常噪音:例如B列增壓器因排氣系統膨脹節老化脫落產生碎片進入渦輪端,造成噴嘴環受損而出現刺耳尖叫聲;A列增壓器在低速經濟航速時出現“嗡嗡”聲及輕微抖動,同時伴有焦糊味。漏油問題:通過檢查發現,油封失效、滑動軸承磨損以及軸承與軸間隙增大,導致滑油油壓驟降,油封漏油成為故障原因之一。渦輪增壓器的外殼破裂是比較嚴重的故障,需要及時更換。江西利勃海爾渦輪增壓器D936L
渦輪在廢氣作用下旋轉,帶動壓縮機葉輪,使進氣被壓縮,為后續的燃燒創造良好條件。遼寧購買渦輪增壓器10326868S
意大利IsottaFraschini公司的V1312HPCR-4V柴油機,日本Niigata公司的16V20FX柴油機,芬蘭Wartsila公司的18V26X柴油機,以及德國MAN公司的V28/33DSTC柴油機都使用相繼增壓機型,幾家公司設計的相繼增壓系統的結構與Pielstick相類似,與MTU公司比,這種相繼增壓系統結構簡單,便于高工況放氣以及進排氣旁通技術的應用。國內方面,哈爾濱工程大學一直在相繼增壓系統的自主研發與生產中發揮著舉足輕重的作用。1991年,率先開展了相繼增壓柴油機熱力過程的計算與分析,隨后與陜西柴油機廠合作完成了針對12VPA6-280STCMPC柴油機的理論及試驗研究;1996年~2000年間,研發出16PA6-280STC柴油機的相繼增壓系統及STC控制儀,并已批量生產。中國北方發動機研究所以12V150柴油機為基礎,完成了MPC+STC的系統改造,并對其1TC和2TC狀態分別進行了外特性試驗,確定了STC系統的切換點。上海交通大學基于D6114車用柴油機進行大小渦輪相繼增壓系統改造,并對改造后的相繼增壓系統進行了理論和試驗研究。上海711所針對MWMTBD234V8型船舶柴油機應用相繼增壓技術進行了一些理論與性能試驗研究,并研制了電子控制系統。遼寧購買渦輪增壓器10326868S