在如今的作業中,無人機路面巡查替代傳統的人工巡查,展現出巨大的效率優勢。像高速施工工地這樣的環境下,施工方為了保障施工安全,就需要對施工范圍進行嚴格管控,傳統的人工巡查效率低,受限于地形、時間等問題,容易出現盲點。相比人工,利用無人機進行AI識別則可以逐幀圖像監測,即便是夜晚也能夠利用紅外傳感器進行數據收集,幾乎不會遺漏任何信息。而交通管理部門,則可以利用無人機快速到底事故地點進行疏導,緩解交通壓力。慧視SpeedDP已經迭代至3.0版本。山西智慧城市AI智能安全帽識別
激光反無設備的攝像頭中加裝了高性能的AI圖像處理板,將設備部署在預定區域,AI圖像處理板在算法的加持下,實現對禁飛區域空中目標的24小時不間斷AI巡邏,能夠快速發現、鎖定、處置目標,在數秒內利用高能激光毀傷無人機目標。要想到達更加精細的識別目的,板卡的性能很關鍵,同時視頻數據的質量同樣重要。高幀頻的相機能夠捕捉更多畫面細節,這樣高性能圖像處理板在進行AI識別處理時,就能夠獲取更多信息,識別的精度就會提升。像成都慧視開發的高性能高幀頻圖像處理板就考慮到了這一點,通過RK3588和FPGA接口的深度定制,輕松打破高幀頻視頻的輸入輸出,讓板卡實現更精細的數據處理。安徽行業用AI智能技術SpeedDP深度學習AI算法開發平臺。
無人機能夠通過高空拍攝快速獲取大范圍、多角度的地面信息。但是傳統的攝像頭只能獲取視頻數據,對于許多需要進行數據分析的行業來說顯然不夠智能化,從無人機視頻數據中快速獲取提煉大量有價值的信息,不僅能夠提升工作效率,還能夠減少不小的成本支出。這就是無人機的AI識別能力。通過識別算法,在無人機工作時就對目標范圍進行AI檢測識別,從而提煉所需信息。這就需要對無人機進行智能化改造,可以在傳統無人機吊艙中植入成都慧視開發的高性能AI圖像處理板,如利用RK3588深度開發而成的Viztra-HE030圖像處理板,6.0TOPS的算力能夠快速處理無人機識別到的復雜畫面信息,這樣就有了硬件基礎,剩下的就需要對自身算法進行不斷優化提升。
長時間一直進行這樣的圖像標注工作,那無疑是枯燥而乏味的,手酸不說,更多的是精神上的折磨,進而效率大打折扣。但這又是算法提升的必要途徑,無法跳過,當項目緊急時,甚至需要多人加班加點趕進度。這樣的痛苦現狀急需改變!慧視光電的算法工程師為了提高這一的效率,開發了一個深度學習算法開發平臺SpeedDP。它的基本邏輯是基于一個手動標注一定量的數據集進行訓練,形成一個可用的預選模型(如果已有模型可以直接使用),然后訓練一定階段后,可以評估此模型的能力,如果能夠滿足使用就可以對相同目標的新數據集(未進行任何標注)進行AI自動化標注。這一過程的省去了大量需要對新數據集的手動拉框工作,同時也在不斷反哺此模型算法,幫助提升性能。SpeedDP能夠節約大量的圖像標注時間。
利用圖像處理技術實現導彈的遠程打擊是一項運用了比較長時間的技術,相比于現代化的電子控制,它具備低受干擾的特點,特別是無人機在軍備領域的廣泛應用,圖像處理的作用重新受到重視。遠程打擊時,需要對整個彈的識別能力進行深度學習訓練,不斷的訓練能夠讓AI更加聰明,讓AI知道該打擊什么,從而提升打擊精度。在前期的試驗印證階段,需要進行大量反復的試驗訓練,通過在導彈前端植入導引頭,給導彈裝上眼睛,可以實時記錄導彈打出后的視頻畫面,然后將大量的視頻數據采集到一起用于分析改進。成都慧視能夠幫助訓練算法嗎?湖北深度學習AI智能科技
圖像算法工程師再也不用經常熬夜進行圖像標注工作了。山西智慧城市AI智能安全帽識別
瑞芯微推出的RK3588系列圖像處理板作為國產化板卡的性能前列,成為了各領域研究開發的優先,它能在諸多行業實現目標檢測、識別以及跟蹤等功能,具有重要的研究開發價值。特別是對于高校而言,將RK3588作為課題進行研究開發,是一個不錯的選擇。但是在這些功能實現過程中,算法的能力就十分重要,如何讓算法更加精細的識別檢測例如人、車、船等目標成為首要解決的問題。要想讓AI算法更能精確的識別檢測目標,可以利用AI的深度學習能力,讓AI不斷學習這些目標的特征,從而達到精細識別的能力。這個過程,可以通過大量的數據標注,來訓練AI。但大量待標注工作,常常讓開發者頭疼。如果采用傳統方式用人工挨個挨幀標注,將會耗費大量時間精力,讓成本不可控。山西智慧城市AI智能安全帽識別