DDR測試
大部分的DRAM都是在一個同步時鐘的控制下進行數據讀寫,即SDRAM(Synchronous Dynamic Random -Access Memory) 。SDRAM根據時鐘采樣方式的不同,又分為SDR SDRAM(Single Data Rate SDRAM)和DDR SDRAM(Double Data Rate SDRAM) 。SDR SDRAM只在時鐘的上升或者下降沿進行數據采樣,而DDR SDRAM在時鐘的上升和下降 沿都會進行數據采樣。采用DDR方式的好處是時鐘和數據信號的跳變速率是一樣的,因 此晶體管的工作速度以及PCB的損耗對于時鐘和數據信號是一樣的。 用DDR的BGA探頭引出測試信號;測試服務DDR測試多端口矩陣測試
實際的電源完整性是相當復雜的,其中要考慮到IC的封裝、仿真信號的切換頻率和PCB耗電網絡。對于PCB設計來說,目標阻抗的去耦設計是相對來說比較簡單的,也是比較實際的解決方案。在DDR的設計上有三類電源,它們是VDD、VTT和Vref。VDD的容差要求是5%,而其瞬間電流從Idd2到Idd7大小不同,詳細在JEDEC里有敘述。通過電源層的平面電容和用的一定數量的去耦電容,可以做到電源完整性,其中去耦電容從10nF到10uF大小不同,共有10個左右。另外,表貼電容合適,它具有更小的焊接阻抗。Vref要求更加嚴格的容差性,但是它承載著比較小的電流。顯然,它只需要很窄的走線,且通過一兩個去耦電容就可以達到目標阻抗的要求。由于Vref相當重要,所以去耦電容的擺放盡量靠近器件的管腳。然而,對VTT的布線是具有相當大的挑戰性,因為它不只要有嚴格的容差性,而且還有很大的瞬間電流,不過此電流的大小可以很容易的就計算出來。終,可以通過增加去耦電容來實現它的目標阻抗匹配。在4層板的PCB里,層之間的間距比較大,從而失去其電源層間的電容優勢,所以,去耦電容的數量將增加,尤其是小于10nF的高頻電容。詳細的計算和仿真可以通過EDA工具來實現。DDR測試方案DDR內存條電路原理圖;
對于DDR2-800,這所有的拓撲結構都適用,只是有少許的差別。然而,也是知道的,菊花鏈式拓撲結構被證明在SI方面是具有優勢的。對于超過兩片的SDRAM,通常,是根據器件的擺放方式不同而選擇相應的拓撲結構。圖3顯示了不同擺放方式而特殊設計的拓撲結構,在這些拓撲結構中,只有A和D是適合4層板的PCB設計。然而,對于DDR2-800,所列的這些拓撲結構都能滿足其波形的完整性,而在DDR3的設計中,特別是在1600Mbps時,則只有D是滿足設計的。
1.目前,比較普遍使用中的DDR2的速度已經高達800Mbps,甚至更高的速度,如1066Mbps,而DDR3的速度已經高達1600Mbps。對于如此高的速度,從PCB的設計角度來幫大家分析,要做到嚴格的時序匹配,以滿足信號的完整性,這里有很多的因素需要考慮,所有的這些因素都有可能相互影響。它們可以被分類為PCB疊層、阻抗、互聯拓撲、時延匹配、串擾、信號及電源完整性和時序,目前,有很多EDA工具可以對它們進行很好的計算和仿真,其中CadenceALLEGROSI-230和Ansoft’sHFSS使用的比較多。顯示了DDR2和DDR3所具有的共有技術要求和專有的技術要求協助DDR有那些工具測試;
DDR5具備如下幾個特點:·更高的數據速率·DDR5比較大數據速率為6400MT/s(百萬次/秒),而DDR4為3200MT/s,DDR5的有效帶寬約為DDR4的2倍。·更低的能耗·DDR5的工作電壓為1.1V,低于DDR4的1.2V,能降低單位頻寬的功耗達20%以上·更高的密度·DDR5將突發長度增加到BL16,約為DDR4的兩倍,提高了命令/地址和數據總線效率。相同的讀取或寫入事務現在提供數據總線上兩倍的數據,同時限制同一存儲庫內輸入輸出/陣列計時約束的風險。此外,DDR5使存儲組數量翻倍,這是通過在任意給定時間打開更多頁面來提高整體系統效率的關鍵因素。所有這些因素都意味著更快、更高效的內存以滿足下一代計算的需求。主流DDR內存標準的比較;DDR測試方案
DDR協議檢查后生成的測試報告;測試服務DDR測試多端口矩陣測試
DDR測試
除了DDR以外,近些年隨著智能移動終端的發展,由DDR技術演變過來的LPDDR(Low-PowerDDR,低功耗DDR)也發展很快。LPDDR主要針對功耗敏感的應用場景,相對于同一代技術的DDR來說會采用更低的工作電壓,而更低的工作電壓可以直接減少器件的功耗。比如LPDDR4的工作電壓為1.1V,比標準的DDR4的1.2V工作電壓要低一些,有些廠商還提出了更低功耗的內存技術,比如三星公司推出的LPDDR4x技術,更是把外部I/O的電壓降到了0.6V。但是要注意的是,更低的工作電壓對于電源紋波和串擾噪聲會更敏感,其電路設計的挑戰性更大。除了降低工作電壓以外,LPDDR還會采用一些額外的技術來節省功耗,比如根據外界溫度自動調整刷新頻率(DRAM在低溫下需要較少刷新)、部分陣列可以自刷新,以及一些對低功耗的支持。同時,LPDDR的芯片一般體積更小,因此占用的PCB空間更小。 測試服務DDR測試多端口矩陣測試